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Introduction - What is this about?

I Multimedia content is found everywhere
I “Everyone” has recording equipment
I People tend to trust something we see more than something we read
I Multimedia:

I Audio
I Image
I Video

I Data related to the multimedia content
I Metadata

I ENFSI has general and best practices guides on their webpage:
https://enfsi.eu/
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Introduction - Learning outcomes

I Understand some of the possibilities and challenges in multimedia
forensics

I Understand metadata
I Know the process that craetes multimedia and the artifacts that is created
I Understand a few methods that are used in multimedia forensics
I What makes deepfakes “deep”, and how to detect it

3 / 26



Metadata - What ismetadata?

I “Data about data”
I A description of the content
I Parameters for playing the content
I Description of equipment used for creating content
I Metadata can be found many places

I In media file
I Text files
I In databases
I Other archives?
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Metadata - File system data

I Data about the file itself
I File name
I MAC times

I Modified, Last accessed, Created/Metadata changed
I But contemporary operating systems don’t update Last accessed times
I Created is mostly updated to the time the file is created in the file system
I Modified often survives when unpacked from a zip archive

I Username of owner
I Access rights to file
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Metadata - Container file data

I Multimedia file typically contains:
I Content streams: Video and audio content
I Information about the content

I EXIF, MP3tags, etc.
I Written by creator and editing processes
I . . .but can also be modified by others
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Metadata - EXIF

I Exchangeable image file format
I Set by the camera or image creation program
I Can be updated by other programs
I Includes information about the equipment
I Sometimes also GPS coordinates
I Many programs can print the EXIF data

I exiv2, exiftool, etc.
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Metadata - EXIF example

$ exiftool 20211011/20211011-1806-S10-5851.jpg
ExifTool Version Number : 12.16
File Name : 20211011-1806-S10-5851.jpg
...
File Size : 2.4 MiB
File Modification Date/Time : 2021:10:11 18:06:48+02:00
File Access Date/Time : 2021:11:04 18:14:17+01:00
File Inode Change Date/Time : 2021:10:17 22:31:22+02:00
...
Make : samsung
Camera Model Name : SM-G973F
...
GPS Latitude : 59 deg 54’ 31.76" N
GPS Longitude : 10 deg 48’ 44.12" E
...
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Audio forensics - Audio fundamentals

I Sound waves are pressure waves in a medium (air, solid materials)
I The pressure differences over time is the sound pressure

I Measured with regard to a reference pressure: dB
I Frequency is the number of pressure tops/bottoms per second

I Measured in Hz
I A complex wave can consist of several waves, each with different

frequencies
I A microphone convert the sound waves to electrical waves

I Has a frequency response— different sensitivity for different frequencies
I Analogue to Digital Conversion (ADC) introduces noise to the process
I Lossy compression of digital signal also introduces artifacts

I Lossy: mp3, aac; Lossless: wav, flac
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Audio forensics - Visualizing sound
←Waveform ↓ Spectrogram
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Audio forensics - Cleaning
I Remove noise or other sounds to enhance the sound of interest
I Want to better understand what is happening or being said in the

redording
I For speech, a high risk of bias when interpreting result

I We tend to hear what we expect to hear
I Mosty a subtractive action
I Remove frequencies that contain noise components

I But keep most of the speech components
I Works fairly well for a static noise component

I Be aware that removing parts of the spectrum can make words sound
differently
I e.g. sh→ s, sharp sounds becoming more “muffled”, etc.
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Audio forensics - Notch filter example
I Notch filter will remove only a small range of frequencies
I Other main type of filters are band-pass and -stop filters, high- and

low-pass/ -stop filters
I Below is speech interrupted by a vacuum cleaner, to the left using a notch

filter for one of the major noise frequencies:
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Audio forensics - Authenticity

I Authenticity of a recording is to determine whether:
I The recording is in its original state
I The recording is of the described event

I Finding edited areas
I Cuts, splices
I Find abrupt changes in the content
I Noise suddenly changing characteristics

I Does metadata match the content?
I Lack of evidence of manipulation does not guarantee authenticity
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Audio forensics - Splicing example
I The upper image is spliced, the bottom is the original
I Note the change in noise at the splice
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Audio forensics - Doppler effect

I Sound waves generated while moving will be compressed in the direction
of movement and stretched in the opposite direction

I The same is true for a static audio source and a moving recorder
I Compressed waves means a higher frequency, or pitch
I Stretched waves means a lower frequency, or pitch
I Example of the Doppler effect: Sirens passing by, train horn as it passes.
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Image forensics - Capture process

I Light enters through lenses — focuses image on sensor
I Color Filter Array (CFA) — each pixel only see one color component
I Sensor — Transform photons to electric current and digitizes the current
I Camera processor:

I Demosaic — four color pixels from the CFA to one pixel with three colors
I In-cam processing — Color/ white balance, contrast, saturation adjustments
I Image encoding — JPEG compression

I Post-processing of image
I Editing
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Image forensics - Capture process
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Image forensics - Photogrammetry

I Measure angles, distances, sizes in photos
I Mapping from 2D to 3D space

I Trigonometry
I Compare to objects with known sizes

I Need to know the effects lenses have on the photo: Optical distortion
I Straight lines curving in the photo
I Barrel distortion — lines curving away from the center
I Pin-cushion distortion — lines curving toward the center
I Moustache distortion, a combination of barrel and pin-cushion distortion
I Photo editing programs often have filters to adjust optical distortions

I Perspective distortion
I Wide-angle distortion — Objects closer to the camera appear bigger
I Compression distortion — Objects further away appear bigger, closer
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Image forensics - Distortion from wide angle lens
I A grid notebook page, wide angle lens from a phone
I The example shows a pin-cushion distortion

I Can be from in-camera lens correction
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Image forensics - Editing detection

I Malicious editing operations change the perceived meaning of the image
I Copy part of an image to another location in the same image
I Copy part of another image into the image
I Remove part of an image, change perspective, etc.

I Analysis of the encoded data
I Anomalies in blocking of JPEG images
I Error Level Analysis
I Anomalies in histogram of JPEG DCT coefficients

I Analysis of the scene
I Lighting/shadow anomalies
I Detection of similar areas in the photo
I Perspective anomalies
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Image forensics - Equipment identification

I Each sensor consist of millions of pixels, each have slight variations due to
production imprecision

I Photoresponse Non-uniformity (PRNU)
I Unique for each photosensor
I The PRNU can be suppressed by strong compression
I Experiments show that this is stable over the lifetime of the chip
I Exist python libraries for extracting and comparing the PRNU

I Color Filter Array / demosaicing artifacts
I Don’t uniquely identify device
I Identify type of device, camera model
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Image forensics - Deepfakes
I Term from AI — Deep learning
I Most generators today use Generative Adversial Networks (GAN)

I One deep learning module generate images
I The other tries to detect which is generated
I Result fed back to generator that tries to improve the generated image
I Many iterations

I Sometimes the generated image have details that don’t make sense for a
human eye

I Often lack PRNU, but this can be synthetically created (if implemented in
generator)

I Machine learning detection
I By adjusting GAN or compressing image: detection rate drops
I Don’t trust AI/ML detection methods more than at an advisory level
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Video forensics - Different than images?

I One image per frame plus audio
I Videos are typically more compressed than images

I Removes PRNU, demosaicing artifacts
I Less standardized, more configurable encoding steps

I Also a temporal component to the encoding and compression
I Parameters for encoding can be used for identifying models of equipment

I Harder to hide evidence of editing operations, as every frame need to be
undetectable

I Some operations
I Remove noise, encoding and compression artifacts
I Find editing operation such as greenscreen
I Detect deepfakes
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Video forensics - Audio/ video correlation

I Speed of light is different from the speed of sound
I 299 792 458 m/s vs. 343 m/s (at 20 °C, dry air)

I One second difference between visual source of sound and audible sound
means that the event was 343 meters from the camera

I Can be hard to know exactly when a visible event generates the sound
I Have to find the offset between video and audio from close events

I Check that the audio/video offset is stable throughout the video
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Video forensics - Deepfakes
I Videos can be generated from scratch, but this is resource demanding
I Add a face to the body of someone else

I Face swapping apps
I Make a person say something different

I Change the audio to something else
I Change the face to give new expression, mouth movements to match the

audio
I Can also generate deepfake audio

I Video deepfakes are often easier to detect, as the generation is harder
and leaves more anomalies
I E.g. blinking, eye movements, but many deepfake generators implement

this now
I Anomalies can be hidden by harder compression
I A search on Youtube on “deepfake” shows many examples of face swaps
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Video forensics - Other sources

I Also use external sources:
I OSINT
I Interpretation of the recorded scene (audio, photo, video)

I Does the content fit the broader picture, or is it inconsistencies between
the content and the broader context?

I As deepfake technology gets better and more accessible, this will be used
for all types of information
I Elections
I Polarized topics
I +++
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Thank you for your attention
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